On the 486-Vertex Distance-Regular Graphs of Koolen-Riebeek and Soicher
نویسندگان
چکیده
منابع مشابه
On almost distance-regular graphs
Distance-regular graphs have been a key concept in Algebraic Combinatorics and have given place to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study ‘almost distance-regular graphs’. We use this name informally for graphs that share some regularity properties that are related to distance in the ...
متن کاملEdge-distance-regular graphs are distance-regular
A graph is edge-distance-regular when it is distance-regular around each of its edges and it has the same intersection numbers for any edge taken as a root. In this paper we give some (combinatorial and algebraic) proofs of the fact that every edge-distance-regular graph Γ is distance-regular and homogeneous. More precisely, Γ is edge-distance-regular if and only if it is bipartite distance-reg...
متن کاملOn Vertex Attack Tolerance in Regular Graphs
We have previously introduced vertex attack tolerance (VAT), denoted mathematically as τ(G) = minS⊂V |S| |V−S−Cmax(V−S)|+1 where Cmax(V −S) is the largest connected component in V − S, as an appropriate mathematical measure of resilience in the face of targeted node attacks for arbitrary degree networks. A part of the motivation for VAT was the observation that, whereas conductance, Φ(G), captu...
متن کاملOn the distance eigenvalues of Cayley graphs
In this paper, we determine the distance matrix and its characteristic polynomial of a Cayley graph over a group G in terms of irreducible representations of G. We give exact formulas for n-prisms, hexagonal torus network and cubic Cayley graphs over abelian groups. We construct an innite family of distance integral Cayley graphs. Also we prove that a nite abelian group G admits a connected...
متن کاملRegular vertex diameter critical graphs
A graph is called vertex diameter critical if its diameter increases when any vertex is removed. Regular vertex diameter critical graphs of every valency k ≥ 2 and diameter d ≥ 2 exist, raising the question of identifying the smallest such graphs. We describe an infinite family of k-regular vertex diameter critical graphs of diameter d with at most kd+ (2k − 3) vertices. This improves the previ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Electronic Journal of Combinatorics
سال: 2020
ISSN: 1077-8926
DOI: 10.37236/8954